Overview

- NuScale is commercializing a 40 MWe system that can be scaled to meet customer requirements of virtually any size.

- NuScale’s standard design is for a power plant with up to 12 modules generating 480 MWe.

- NuScale technology developed and tested by Oregon State University, Idaho National Lab and Nexant-Bechtel under DOE funded research. Company formed in 2007 with tech-transfer agreement from OSU.

- Design innovations simplify construction, strengthen safety, reduce costs and financial risks, and improve reliability.

- Reliance on existing commercial nuclear technology reduces regulatory risk and increases speed to market.
Management Team

<table>
<thead>
<tr>
<th>Executive</th>
<th>Position</th>
<th>Experience / Accolades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paul G. Lorenzini, PhD</td>
<td>Chief Executive Officer</td>
<td>President, Pacific Power & Light
CEO, PowerCorp Australia
VP/General Manager, Rockwell Hanford Operations</td>
</tr>
<tr>
<td>Jose N. Reyes, PhD</td>
<td>Chief Technical Officer</td>
<td>Internationally recognized for leadership in developing scalable test facilities for nuclear plants
United Nations International Atomic Energy Agency (IAEA) technical expert on passive safety systems
Department Chair, Nuclear Engineering, Oregon State University</td>
</tr>
<tr>
<td>Tom Marcille</td>
<td>Chief Operating Officer</td>
<td>Chief Engineer, Advanced Reactors, Los Alamos National Laboratory
Twenty years as a contributing, managing and chief engineer in GE's advanced and terrestrial BWR business units</td>
</tr>
<tr>
<td>John “Jay” Surina</td>
<td>Chief Financial Officer</td>
<td>V.P. Financial Planning and Analysis, Boart Longyear
Executive positions, Texas Genco, Centrica North America, Sithe Energies
Co-founder and a managing partner of Cornerstone Energy Advisors
MBA, Wharton School, University of Pennsylvania</td>
</tr>
</tbody>
</table>
NuScale Project Organization

Nuclear Vendor
- Design & Engineering (NSSS)
- Licensing (Certification)
- Support services

Suppliers
- Fabricate Modules
- Steam Generator
- Forgings
- CRDM’s

A/E Constructor
- Design & Engineering (BOP)
- Project Management
- Site Preparation & Construction

Owner (typical utility)
- Site selection
- Licensing (ESP/COL)
- Operations
Strategic Partner - Kiewit Construction: NuScale / Kiewit MOU signed April 2008

- Employee-owned company; $6 billion annual revenue with 120 year history and 16,600 Employees
- FORTUNE’s most admired company in the engineering and construction industry in 2007
- Major power plant constructor
- Major commitment to new nuclear projects based on past nuclear construction experience
Key Industry Contractors and Partners

NuScale Power

- Product Development
- Strategic Planning
- Safety Analysis
- Core Neutronics
- NSSS Design
- Operations & Maintenance
- Training & Development
- Project Management

Studsvik
- Core Design
- Refueling
- Safety Analysis Support

OSU (Oregon State University)
- Test Facilities
- Safety Analysis Support

Creare
- Safety Analysis Support

Longnecker Enterprises
- Digital I&C
- Control Room Design

GSE

MPR
- Core Internals
- Seismic
- Licensing
- Project Management Support

Modarres Consulting
- Probabilistic Risk Analysis

SAIC
- Security
- Emergency Planning
- Safety Analysis Support

CURTIS WRIGHT

Kiewit
- Site Prep
- Plant Construction
- Engineering Support
- Balance of Plant
- Fabrication
NuScale Power: Prefabricated, simple, safe …

- Construction Simplicity:
 - **Major components prefabricated and shipped by rail, truck or barge** - Entire nuclear system is 60' x 15' / 300 tons.

- Natural Circulation Cooling:
 - **Inherently safe** – Eliminates major accident scenarios
 - **Improves economics** - Eliminates pumps, pipes, auxiliary equipment

- Below Ground:
 - **Enhances security and safety** – Critical components - reactor, control room, fuel pool - located below ground
Prototype Confirms Design

- One-third scale, electrically-heated prototype of NuScale plant confirms performance and safety.

- Plant design based on known commercial nuclear technology and operating experience offers confidence to regulators, owners and operators.
Engineered Safety Features

- High Pressure Containment Vessel
- Shutdown Accumulator System (SAS)
- Passive Safety Systems
 - Decay Heat Removal System (DHRS)
 - Containment Heat Removal System (CHRS)
- Severe Accident Mitigation and Prevention Design Features
High Pressure Containment
Enhanced Safety

- **Capable of 3.1 MPa (450 psia)**
 - Equilibrium pressure between reactor and containment following any LOCA is always below containment design pressure.

- **Insulating Vacuum**
 - Significantly reduces convection heat transfer during normal operation.
 - No insulation on reactor vessel. **ELIMINATES SUMP SCREEN BLOCKAGE ISSUE (GSI-191).**
 - Improves steam condensation rates during a LOCA by eliminating air.
 - Prevents combustible hydrogen mixture in the unlikely event of a severe accident (i.e., no oxygen).
 - Eliminates corrosion and humidity problems inside containment.
Decay Heat Removal System (DHRS)

- Two independent trains of emergency feedwater to the steam generator tube bundles.
- Water is drawn from the containment cooling pool through a sump screen.
- Steam is vented through spargers and condensed in the pool.
- Feedwater Accumulators provide initial feed flow while DHRS transitions to natural circulation flow.
- Pool provides a 3 day cooling supply for decay heat removal.
Containment Heat Removal System (CHRS)

- Provides a means of removing core decay heat and limits containment pressure by:
 - Steam Condensation
 - Convective Heat Transfer
 - Heat Conduction
 - Sump Recirculation
- Reactor Vessel steam is vented through the reactor vent valves (flow limiter).
- Steam condenses on containment.
- Condensate collects in lower containment region (sump).
- Sump valves open to provide recirculation path through the core.
NuScale modules are scalable

Each module has a dedicated Steam Turbine-Generator

Modules can be “numbered-up” to achieve large generation capacities
Multiple-Module Complex – Flexible Capacity
(12 modules – 480 MWe)
Multi-Module Control Room

Plant Overview Display

Redundant High-Tier Alarming

Reactor Control Cluster A

Reactor Control Cluster B

Reactor Control Cluster C

Control Room Supervisor

User-Defined Panel (up to 4 modules)
- Alarm Interface
- Procedure Operation Interface
- Trending and Graphing

Safety Channel (SC) A

Reactor (Rx) 1 Interface
Advantages of modular scalable nuclear plants

- **Operational**
 - Eliminates single shaft risk
 - On-line refueling

- **Financial**
 - Can sequentially add modules to match load growth
 - Smaller plant size minimize financial risks, complexity and uncertainty
 - Off-site manufacturing improves productivity and mitigates construction risks
NuScale’s modular plant offers significant safety enhancements

- June 2-3, 2008, a panel of experts convened to develop a Thermal-Hydraulics/Neutronics Phenomena Identification and Ranking Table (PIRT) for the NuScale module:

- February 24-26, 2009 Severe Accidents Analysis PIRT Panel
 - Large-break Loss of Cooling Accident (LOCA) eliminated by design
 - DBA Small break LOCA’s will not uncover the core, thus do not challenge plant safety
 - Indicated that the PRA is overly conservative with regard to events that lead to core damage.

- Preliminary PRA already indicates that the overall Core Damage Frequency is extremely low
SBLOCA Transient Phases

- **Phase 1: Blowdown Phase**
 - Begins with the opening of the break and ends with the reactor vent valve (RVV) initiation

- **Phase 2: RVV Operation**
 - Begins with the opening of the reactor vent valve and ends when the containment and reactor system pressures are equalized

- **Phase 3 - Long Term Cooling**
 - Begins with the equalization of the containment and reactor system pressures and ends when stable cooling is established via opening of the sump recirculation valves
Pressure (OSU Test - 003B)

- PT 301 - Pressurizer
- PT 801 - Containment

Time (s) vs Pressure (Bars) graph showing the pressure changes over time for PT 301 and PT 801.
Core Damage Frequency by Plant Type

Source: NRC White Paper, D. Dube; Basis for discussion at 2/18/09 public meeting on implementation of risk matrices for new nuclear reactors
Additional Fission Product Barriers

- Fuel Pellet and Cladding
- Reactor Vessel
- Containment
- Containment Cooling Pool Water
- Containment Pool Structure
- Biological Shield
- Reactor Building

NOT TO SCALE
Reduced Emergency Planning Zone

“Generally, the plume exposure pathway EPZ for nuclear power plants shall consist of an area about 10 miles in radius … The size of EPZs may also be determined on a case-by-case basis for … reactors with an authorized power level less than 250 MWt.”

10 CFR 50.47 (c) (2)
NuScale’s Security Advantages

- Safety maintained without external power
- Below-ground
 - Power Module (NSSS and Containment)
 - Control Room
 - Spent Fuel Pool
- Low profile Buildings
Summary of NuScale Advantages

- Reduces financial risks
- Reduces operational risks
- Capacity added to match load growth
- Able to meet demand for smaller sized plants
- Robust supply chain strengthens manufacturing base
- Enhanced safety and security
Pre-Application Reviews Underway with NRC

<table>
<thead>
<tr>
<th>FY2008</th>
<th>FY2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>4Q</td>
<td>1Q</td>
</tr>
</tbody>
</table>

1st Meeting
- NuScale and Design Introduction

Submit Design Description Report

2nd Meeting
- Codes and Methods Topical Report

3rd Meeting
- Online Refueling Topical Report
- Multi-Module I&C and Operations Staffing Topical Report

4th Meeting
- Multi-Module PRA Topical Report
- Severe Accidents Topical Report
- Dose Calculations and Emergency Planning Topical Report
201 NW 3rd STREET
CORVALLIS, OR 97330
541-207-3931

Dr. José N. Reyes, Jr.
Chief Technical Officer
JNR@NUSCALEPOWER.COM