A Compact Transportable Nuclear Power Reactor

Can be rapidly deployed to remote locations to support oil recovery, disaster relief and basic infrastructure

Paul Farrell and James Powell ¹Brookhaven Technology Group, Inc. and George Merkel U.S. Army Research Laboratory

Canadian Nuclear Society Western Focus June 1-3, 2009 Calgary, Alberta, Canada

Outline

- Motivation for Deployable Reactors
- Requirements (weight, fuel, safety)
- Two Designs based on fuel type, system weight and overall safety
- Applications
- Summary

Conventional Nuclear Power is...

BIG > 1000 MWe, **\$7bn**, nuclear power plants dominate the headlines and the debate.

These projects, involve reactors that produce thousands of megawatts of electric power and require many billions of investment dollars.

Opponents question the safety of various designs.

- Disadvantage
 - High Capital Cost
 - > 48 to 96 Months License and Construction Time
 - 60 year plant life
- Advantages
 - Cost effective (license, siting)
 - Economy of scale
 - Reliable base power
 - Nuclear is CLEAN POWER (No CO2)

What are the Constraints on Realistic <u>Deployable</u> Nuclear Power Systems

- Based on Well Developed Nuclear Technology
 - Developing and certifying now nuclear fuels and coolant/power systems takes many years.
- Use Non-Weapons Grade Nuclear Fuel
 - Maximum enrichment of 20%.
- Safe and Easy to Operate
 - Complete containment of all radioactivity in fuel no releases to environment.
- Able to be <u>Rapidly Deployed to and Removed from Operating Sites</u>
 - Minimal field construction required.
 - Deployable by existing ground and/or air transport systems.
 - Radiation exposure to operators, handlers, and transport personnel must be acceptable.
- Power Output Capability of at Least 10 MW(e) per Modular Unit
 - Larger power output capability desirable for certain applications.

Deployable Electric Energy Reactor (DEER)

Small Nuclear Power Systems Currently Under Development or Proposed

- "Small" is a flexible term depending on developer/proposer.
- Output of designs range from 10 MW(e) up to ~ 300 MW(e).
- Demands above 50 MW(e) could be met by multiple units.
- Development is being carried out world-wide.
- U.S. programs for small [~ 50 MW(e)] reactors are only proposals not in development stage.
- None of the current "small" proposed or under development systems are transportable.
- All operate at a fixed site and require extensive field construction.

List of "Small" [< 50 MW(e)] Nuclear Power Systems Currently Under Development or Proposed

	Reactor	Туре	Power Level	Country	Status	Siting
1.	CAREM	PWR	27 MW(e)	Argentina Under Developme		Ground
2.	KLT – 40S	PWR	35 MW(e)	Russia	Developed	Barge
3.	ABV – GM	BWR	18 MW(e)	Russia Under Development		Ground or Barge
4.	MRX	PWR	30 MW(e)	Japan Under Development		Ground or Ship
5.	RS – MHR	HTGR	10 – 25 MW(e)	U.S. (GA) Proposed		Ground
6.	4S	LMR	10 – 50 MW(e)	Japan & U.S. (Westinghouse)	Under Development	Ground
7.	SSTAR	LMR	10 – 50 MW(e)	Japan & U.S. (Argonne)	Under Development	Ground
8.	ENHS	LMR	50 MW(e)	U.S. (U. of Cal)	Proposed	Ground
9	NuScale	PWR	45MW(e)	U.S.	Proposed	Ground
9.	Hyperion	U-Hydride Fuel-Coolant Not Specified	10 MW(e)	U.S.	Proposed	Ground

Three Nuclear Fuel Options

- Used in dozens of research reactors around the world for decades.
- Extremely safe automatically shuts down when control rods are pulled out.
- UZrH_{1.8} hydride fuel can withstand high temperatures.
- Zero release of fission products.

- Used in 100's of reactors operating around the world for decades.
- UO2 particles dispersed in Zr metal matrix.
- Fuel is very tough and rugged.
- Operates to high burnings with Zero release of fission products.

0.07 cm Pyrographite Inner Layer

 Used in high temperature graphite reactors for decades.

UC Kernel

- TRISO particles
 imbedded in graphite
 blocks or potable.
- Normally helium cooled. In DEER, TRISO. Particles would be water cooled.
- Operates to high temperature with Zero release of fission products.

Deployable Electric Energy Reactor DEER

TRIGA[®] Fuel Selected for <u>Baseline</u> DEER System

- TRIGA[®] Reactors Operate at Many Locations Worldwide
- Have operated safely for decades and 1000s of reactor years
- Perceived as Safe, Reliable and Simple to Operate
- Automatic, Safe Shutdown from Large Reactivity Insertions

- Excellent Retention of Fission Products
- Non-Weapons Grade Fuel 20% Enriched,
- Minimal Testing of TRIGA[®] Fuel required for DEER System

DEER deployable electric energy reactor

- O Reactor Neutronic Performance is Predicted with High Accuracy using 3D Monte Carlo Codes and Detailed Representation of 3D Geometry
 - <u>MCNP Code</u> Calculates
 Initial Reactor Criticality,
 Power Distribution, Control
 Rod Effectiveness, etc.
 - <u>MonteBurns Code</u> Provides Fuel Burn up, Criticality, Control, and Power Distribution over Expected Operating Period
- O 3D MCNP Code Determines Shielding Requirements for:
 - Operation at Full Power
 - Transport of Shut-Down Reactor
- O Reactor Thermal-Hydraulics is Accurately Calculated using standard Heat Transfer Codes

DEER (TRIGA[®] Fuel) Reactor Parameters

Thermal Power (MWt)	200	40	
Electric Power (MWe)	50	10	
Cycle Efficiency	25%	25%	
Reactor OD(cm)	124	63	
Module OD (cm) (20 cm thick tungsten shield)	174	109	
Core OD, cm	120	53	
Core Length (cm)	120	60	
Fuel Element Diameter (cm)	1	0.9	
Fuel Elements in Core	5149	2078	
Uranium in UZrH1.8 Fuel (Wt. %)	30	30	
Uranium in Core, kg (20% U-235)	226	37	
Weight w/Fuel, metric tons	7.4	1.3	
Module Weight w/Tungsten Shield, metric tons	40	13	

Comparison of GA Research and DEER TRIGA[®] Reactors

Component	TRIGA® Research Reactor	TRIGA® DEER REACTOR	
Nuclear Fuel	UZrH _{1.8} Fuel, 1 cm Diameter Fuel Elements	Same	
Coolant Type	Water	Same	
Coolant Pressure and Temperature	1 atm, < 100°C	100 atm, 300°C	
Peak Power Density in Fuel Elements	400 megawatts per liter	0.8 megawatts per liter	
Peak Temperature Inside Fuel Element	1200°C	700°C	
Type of Operation	Thousand of Pulses per Year	Steady State	

K_{eff} vs. Operating Time for DEER with TRIGA[®] Fuel at 10 MWe and 50 MWe Output.

In operation, the reactor control rods are used to control K_{eff}

Deployable Electric Energy Reactor DEER

Three Nuclear Fuel Options

- Extremely safe automatically shuts down when control rods are pulled out.
- UZrH_{1.8} hydride fuel can withstand high temperatures.
- Zero release of fission products.

- Used in 100's of reactors operating around the world for decades.
- UO2 particles dispersed in Zr metal matrix.
- Fuel is very tough and rugged.
- Operates to high burnings with Zero release of fission products.

- Used in high temperature graphite reactors for decades.
- TRISO particles
 imbedded in graphite
 blocks or potable.
- Normally helium cooled. In DEER, TRISO. Particles would be water cooled.
- Operates to high temperature with Zero release of fission products.

Deployable Electric Energy Reactor DEER

TRISO Fuel Selected for Advanced DEER System

- TRISO Fuel Enables very Compact, very Lightweight, High Power Advanced DEER Reactor Systems
 - Packed Beds of TRISO Fuel Particles would be Directly Cooled by Water
 - Core Power Densities can be >> 1 MW(th)/Liter
- TRISO Particles can be <u>Hydraulically Loaded into, and Unloaded</u>
 <u>from, DEER Reactors</u>
 - Spent Fuel Particles transferred to Small Transport Cask in a Few Hours and Rapidly Transported away from Site
 - After TRISO Particles are Removed, Residual Radioactivity in Reactor System is Much Less
 - Reactor can be Re-Loaded with Fresh, Non-Radioactive TRISO[®] Particles, or Removed from Site
- TRISO Particles Have Excellent Retention of Fission Products

DEER Advanced Reactor Using Hydraulic Loading/Unloading of TRISO Nuclear Fuel Particles

10 MW(e) Advanced DEER-2 System Transport Cask

TRISO[®] Fueled DEER Reactor Parameters

Based on Fuel Elements with Hydraulically Loaded/Unloaded TRISO Particles

TRISO Reactor Parameters	DEER-10	DEER-50
Thermal Pow er (MW)	40	200
Cycle Efficiency (%)	25	25
Reactor OD (cm)	65	92
Core OD (cm)	45	71
Reactor Core Length (cm)	100	176
# of Fuel Elements in Core	37	91
Fuel Element OD (cm)	6	6
Thickness of TRISO Bed in Fuel Element (cm)	1.45	1.45
Avg. Pow er Density in TRISO Bed MW(th)/liter	0.78	0.78
Initial U-235 Loading in Core (kg)	14.6	73
50% Burnup Lifetime (months)	6	6
Weight of Reactor including Fuel (metric tons)	1.25	4.5

Unique Market Sectors

- Military and National Security
 - Domestic Military Bases
 - Forward Operating Bases
 - Overall Grid Vulnerability
- Process Heat
 - Chemical/Industrial
- Commercial Power
- Power for Remote Locations
- Potable Water, Desalination, Fertilizer
- Oil Recovery

DEER Applications

Functional Processes for Fuel and Power Generation Using the Compact DEER Deployable Reactor System

The Product Add-Ons

Production	10 MW(e)	50 MW(e)	
JP-8 Fuel	3,000 gallons per day	15,000 gallons per day	
Potable Water [40°C, 23% humidity atmospheric conditions in Iraq]	430,000 gallons per day*	2,150,000 gallons per day*	

DEER Installation and Removal

Thermal Afterheat thermal power following shutdown for the 10 MW(e) DEER reactor

Two days after shutdown, the thermal power is 150 kilowatts, about 0.3% of the 40 megawatts generated at full power.

Approximately one-third is from short range beta particles, which stop inside the reactor, and two-thirds is from gamma photons, which require shielding

Gamma Dose Rate

Gamma dose rates after 1000 hours of operation as a function of the distance from the surface of the reactor. Calculation is based on a 20 cm thick tungsten shield with 2.3 days after reactor shutdown. The gamma attenuation factor inside the reactor is assumed to be 10:1

Maximum permissible dose is 5 rem per year

Oil Sands Processing Chain

Deployable Electric Energy Reactor DEER

Role of DEER in Oil Recovery

DEER reactors can supply either :

- (A) steam and hot water;
- (B) steam, hot water, and electrical power; and
- (C) electrical power only

Percent caloric value of operations as % of synthetic crude energy	Mining	Extraction	Coking or Extraction /Coking	Hydro- treating	Total	
Process Options	Surface Mining					
1 Hot Water	10	13	7	10	40	
2 Direct Coking	10		15	10	35	
		In S	itu Recover	у		
3 Steam Flooding		26	7	10	43	
4 Combustion			13-25	10	23-35	

Probstein and Hicks, "Synthetic Fuels", Dover, 2006

DEER option B offers a low cost way to make hydrogen for hydrotreating. The turbine exhaust pressure is set relatively high, e.g., above 1 atmosphere, which results in steam and hot water for options 1 and 3 in processing the oil sands, while still enabling the generation of substantial amounts of electric power to be used for electrolyzing water to make hydrogen.

Summary

- Safe compact deployable 10 to 50 MWe reactors with integral radiation shield can be prebuilt and <u>transported to and from</u> locations where and when they are needed.
- Two designs are presented that differ in type of fuel, fuel handling and overall system weight.
- Applications are
 - Military
 - Industrial
 - Humanitarian
 - Dedicated industrial process heat and electric
 - Off grid power applications

