

JSC "AFRIKANTOV OKBM"

HEAT AND POWER SOURCES BASED ON NUCLEAR SHIPBUILDING TECHNOLOGIES

Veshnyakov K.B., Fadeev Yu.P.

MAIN FIELDS OF OKBM ACTIVITY

1947 FOUNDATION OF THE ENTERPRISE

MARINE REACTOR PLANTS FOR THE NAVY

HIGH-TEMPERATURE GAS-COOLED REACTORS FA

MARINE REACTOR PLANTS FOR THE CIVIL FLEET

NUCLEAR FUEL HANDLING EQUIPMENT

UNIFIED EQUIPMENT FOR NPP (PUMPS, FANS)

JSC "OKBM AFRIKANTOV" STRUCTURE

DESIGN DEVISION

PRODUCTION FACILITIES

FABRICATION OF PILOT EQUIPMENT FOR NUCLEAR POWER INDUSTRY DEVELOPMENT OF PLANTS AND EQUIPMENT OF NUCLEAR POWER COMPLEX

RESEARCH AND TESTING COMPLEX

SCIENTIFIC RESEARCH AND FULL-SCALE TESTS

SMALL NPP BASED ON NUCLEAR SHIPBUILDING TECHNOLOGIES

- APPLICATION OF PR-VEN TECHNOLOGIES OF SHIP-BASED MODULAR REACTORS
 - OPERATION
 EXPERIENCE OF SHIP BASED REACTORS OVER
 6500 REACTOR/YEARS
 - LONG-TERM
 EXPERIENCE IN
 DESIGNING AND
 FABRICATION OF SHIP BASED MODULAR
 REACTORS

- APPLICATION OF PWR REACTORS OPERATION TECHNOLOGY AND EXPERIENCE
- APPLICATION OF NPP OPERATION TECHNOLOGY AND EXPERIENCE FOR DISTRICT HEATING
- INTERNATIONAL REQUIREMENTS FOR SAFETY

APPLICATION OF PREVIOUS R&D RESULTS

APPLICATION OF SMALL NUCLEAR POWER SOURCES

FLOATING PLANTS FOR ELECTRICITY AND HEAT SUPPLY FOR HARD-TO-REACH COASTAL AREAS OR OIL AND GAS PRODUCTION

FLOATING NUCLEAR POWER-DESALINATION COMPLEXES

AUTONOMOUS POWER SUPPLY OF MARINE OIL-PRODUCING PLATFORMS GROUND PLANTS FOR AUTONOMOUS POWER SUPPLY

REACTOR TYPES FOR NUCLEAR POWER SOURCES

CHARACTERISTICS	FLOATING CO-GENERATION PLANT		GROUND CO- GENERATION PLANT
	ABV-6M	KLT-40S	ABV-6M
NUMBER OF RP	2	2	2
RP THERMAL POWER, MW	2×38	2×150	2×38
ELECTRICAL POWER IN CONDENSATION MODE, MW	2×8.6	2×38.5	2×8.6
ELECTRICAL POWER IN CO-GENERATION MODE, MW	2×6	2×19.4	2×6
HEAT SUPPLY, GCAL/H	2×12	2 ×70	2×12
REFUELING PERIODICITY, YEARS	once every ten years	once every three years	once every ten years
HOURS OF POWER OPERATION PER YEAR, H	75008000		

FLOATING NPPs – A NEW GROUP OF POWER SOURCES

- AUTONOMOUS POWER UNIT IS MOUNTED ON NON-SELF-PROPELLED BARGE OR ON PONTOON SYSTEM
- **COMPLETELY FABRICATED AT THE SHIPBUILDING YARD**
- SUPPLIED TO THE CUSTOMER ON A TURNKEY BASIS AFTER ACCEPTANCE TESTS
- ***** TRANSPORTED TO THE SITE BY WATER
- **# LONG-TERM OPERATION WITHOUT REFUELING OR REPAIR**
- ***** TOTAL SERVICE LIFE OF THE POWER UNIT IS 40 YEARS
- **POSSIBILITY OF CHANGING THE POWER UNIT BASING SITE**

FLOATING NPP SAFETY UNDER EXTERNAL IMPACTS

- WATER AREA PROTECTION AGAINST UNAUTHORIZED ACCESS OF WATER VESSELS AND FLOATAGE
- PLANT FLOODABILITY IS PROVIDED BY DIVIDING THE HULL INTO WATER-PROOF COMPARTMENTS AND IS DEMONSTRATED AT FLOODING OF ANY TWO NEIGHBORING COMPARTMENTS. WHEN ANY TWO NEIGHBORING COMPARTMENTS ON ANY BOARD ARE FLOODED, THE MAXIMUM HEEL DOES NOT EXCEED 3%
- REACTOR PLANT PROTECTION AT FNPP COLLISION WITH OTHER VESSELS IS PROVIDED BY REACTOR ARRANGEMENT IN THE MIDSHIP BODY ABOVE DOUBLE BOTTOM
- MULTI-LAYER UPPER DECKING OF THE PLANT SUPPRESSES THE KINETIC ENERGY OF A FALLING AIRCRAFT OWING TO SPECIAL DESIGN MEANS DISTRIBUTING THE BLOW FORCE OVER A LARGER AREA
- ***** FNPP IS MAINTAINED IN NORMAL CONDITIONS AT STORM-FORCE WIND OF 80 M/S
- SEISMIC STABILITY AND PROTECTION AGAINST STORM WAVES AND EARTHQUAKE WAVES ARE PROVIDED BY NATURAL OR ARTIFICIAL BARRIERS (ISLANDS, CAPES, BREAKWATERS) OR BY FNPP OFFSHORE ARRANGEMENT

LAYOUT OF MAIN KLT-40S RP EQUIPMENT

 TWO-LOOP PLANT WITH PRESSURIZED REACTOR WHICH IS CONNECTED BY THE COAXIAL NOZZLE SYSTEM TO COIL-TYPE STEAM GENERATORS (4 PCS) AND PRIMARY CIRCUIT CIRCULATION PUMPS (4 PCS)

SUPPLY TO CONSUMERS

- ELECTRIC POWER 20...70 MW
- HEAT 50...140 GCal/h

DESALINATION COMPLEX

- NOMINAL OUTPUT FOR DESALINATED WATER, m³/day
 100000
- POWER, MW(el) 2x35

KLT-40S REACTOR

FLOATING NPP BASED ON KLT-40S POWER UNIT

LENGTH, M	140.0
WIDTH, M	30.0
BOARD HEIGHT, M	10.0
DRAUGHT, M	5.6
DISPLACEMENT, T	21 000

COMMISSIONING DEADLINE FOR THE FIRST-OF-A-KIND FLOATING NUCLEAR CO-GENERATION PLANT - 2012 PRODUCTION TIME OF A COMMERCIAL FLOATING NUCLEAR CO-GENERATION PLANT - 2.5 YEARS

ОКБМ

SPENT FUEL HANDLING

RITM-200 STEAM GENERATING UNIT AND LAYOUT

RP EQUIPMEN LAYOUT

MASS OF RP IN CONTAINMENT – 1100t
 OVERALL DIMENSIONS (LxBxH) – 6 x 6 x 15.5 m

 INTEGRAL PRESSURIZED WATER REACTOR WITH FORCED CIRCULATION OF PRIMARY COOLANT AND EXTERNAL GAS PRESSURIZATION SYSTEM FOR MULTI-PURPOSE ICE-BREAKERS

THERMAL POWER, MW	175
FUEL ENRICHMENT, %	<20
REFUELING INTERVAL, years	7
SERVICE LIFE, vears	40

•FINAL DESIGN OF THE ICE-BREAKER – 2009

RP could be used also for stationary and floating power units

ABV-6M STEAM GENERATING UNIT AND REACTOR

ABV-6M REACTOR PLANT

- MASS OF STEAM-GENERATING AGGREGATE 200 t
- 🏶 LENGTH 5 m
- WIDTH 3.6 m
- HEIGHT 4.5 m

COMPETITIVE ADVANTAGES

- INTEGRAL REACTOR WITH 100% NATURAL CIRCULATION OF COOLANT
- UNIFIED STEAM-GENERATING AGGREGATE FOR GROUND AND FLOATING NPP
- MINIMUM INTERFACES WITH SHIP SYSTEMS

FLOATING NPP WITH ABV-6M REACTOR

MAXIMUM LENGTH, m	97140
WIDTH, m	1621
BOARD HEIGHT, m	10
DRAUGHT, m	2.52.8
DISPLACEMENT, t	from 8700

MANUFACTURE AND TESTS AT THE SPECIALIZED FACTORY

TRANSPORTATION

OPERATION WITHOUT REFUELING ON SITE

TRANSPORTATION

REPAIR AND REFUELLING AT THE SPECIALIZED FACTORY

TRANSPORTATION

DISPOSAL OF THE POWER UNIT AND RP

ОКБМ

MAIN BUILDING OF GROUND NPP WITH ABV-6M REACTOR

ALL MAIN BUILDING STRUCTURES ARE DESIGNED TO WITHSTAND LOADS ON BUILDINGS OF SEISMIC STABILITY CATEGORY I, WITH ACCOUNT OF AIRCRAFT CRASH, AIR SHOCK WAVE AND A MAGNITUDE 7 EARTHQUAKE

MASS OF REACTOR MODULE	600 t
LENGTH	13 m
DIAMETER	8.5 m

- ABV-6M RP GROUND OPTION IS A STAND-ALONE, READY-TO-OPERATE MODULE
- THE MODULE PRESSURE VESSEL FUNCTIONS AS A CONTAINMENT

NUCLEAR POWER-TECHNOLOGICAL PLANT (ABV-6M)

GENERATION OF ELECTRIC POWER AND PROCESS HEAT FOR INDUSTRIAL ENTERPRISES AND HOUSING SETTLEMENTS

MAIN CHARACTERISTICS OF THE POWER-TECHNOLOGICAL NPP

Characteristics	Value
Number of ABV-6M reactor units	6
Number of process steam generators	6
Number of turbogenerators	2
Steam output, t/h	6 x 53
Steam for house loads, t/h	53
Secondary steam for customers, t/h	265
Electric power of turbogenerators, MW	2 x 4.25
Parameters of primary steam: - pressure, MPa - temperature, °C	3.2 290
Parameters of secondary steam for customers: - pressure, MPa - temperature, °C	3.0 260

POWER-TECHNOLOGICAL NPP(ABV-6M)

The nuclear power plant is assembled of reactor modules (reactor plants in the containment). Modules with reactor plants are supplied by the manufacturer on a turn-key basis

100 m

25 m

25 m

5.7

100

1

LEAK-TIGHT CONTAINMENT OF A GROUND NPP WITH KLT-40S RP

RADIATION AND ENVIRONMENTAL SAFETY

COST EFFICIENCY BASIS OF SMALL NPP

- FACTORY FABRICATION, MINIMAL STARTUP-ADJUSTMENT REQUIRED ON SITE, SIMPLIFIED SYSTEMS AND STRUCTURES
- LOW FUEL COMPONENT, LARGE LIFETIME AND SERVICE LIFE, MINIMUM SHIFT PERSONNEL
- COMMON MAINTENANCE INFRASTRUCTURE PROVIDING CORE RELOADING, SPENT FUEL HANDLING AND DISPOSAL
- **LONG-TERM PERIOD OF CONTINUOUS WORK, LONG FUEL LIFE**
- SIMPLICITY OF DECOMMISSIONING DUE TO MOBILITY OF POWER UNIT (FLOATING OR GROUND)
- SAVING OF ORGANIC POWER SOURCES (PROFIT FROM THEIR SALE ON DOMESTIC AND FOREIGN MARKET)
- **REDUCTION OF EMISSIONS AND RELEASES INTO THE ENVIRONMENT**

CONCLUSION

- MAIN ADVANTAGES OF SMALL NPPs ARE CONDITIONED BY THEIR MOBILITY, SERIAL FACTORY CONSTRUCTION, LONG SERVICE LIFE, AVAILABLE MAINTENANCE BASIS, MINIMUM CAPITAL AND OPERATION COSTS
- REACTOR PLANTS DEVELOPED BY OKBM ON THE BASIS OF SHIPBUILDING TECHNOLOGIES FOR POWER UNITS WITH UNIT ELECTRIC POWER OF 3-40 MW AND HIGHER (TO 600 MW) CAN BE SUPPLIED COMMERCIALLY UNDER CONDITIONS OF EXISTING FACTORY COOPERATION
- BASIC PROPERTIES
 - HIGH RELIABILITY PROVEN BY OPERATION EXPERIENCE OF MARINE PROPULSION RPs;
 - COMPLIANCE WITH THE MODERN INTERNATIONAL SAFETY REQUIREMENTS;
 - **COMPLIANCE WITH THE NUCLEAR MATERIALS NON-PROLIFERATION CRITERIA.**

JSC "AFRIKANTOV OKBM"

Russia, 603074, Nyzhny Novgorod, Burnakovsky Proezd, 15

Phones	(831) 275 40 76,
	275 26 40
Fax	(831) 241 87 72

E-mail: okbm@okbm.nnov.ru www.okbm.nnov.ru

