SASOR Canada Ltd

Tetra Tech Inc.

4S reactor applications -
Economic case studies

May 2009
Agenda

- Roles of Tetra Tech and SASOR Canada

- Why the 4S Reactor and not others
 - Size
 - Production and Cost
 - Environmental benefits

- Provide Business Plans for Deployment
 - Cost comparisons
 - Time Phased Milestones
 - What SASOR Canada seeks from an oil sands producer

- Discussion
Tetra Tech Inc

- $2 billion (US) licensing, engineering and construction provider with 10,000 employees
- Has business interest in support of small and large nuclear power
- Staff very familiar with all types of small, advanced and large reactor technologies
- Tetra Tech - Wardrop Engineering
- Offices in Canada and in the US
SASOR Canada

- Formed by group of experts in energy markets, Canadian natural resource extraction, nuclear power and business development in 2004
- Foresaw the business interest in nuclear power for cost reasons, social interest for GHG reduction and economic and environmental reasons
- Offices in Calgary and in the US
- Funded for development, siting and licensing a small reactor in oil sands service
- SASOR Canada will BOO (build, own, operate) under contract and sell “over the fence” energy assets to oil sands producer
4S Reactor

- 50 MWe -135 MWth LMR (sodium moderated and cooled)
- Modular construction
- 15-30 year core – No refueling
- No used fuel on site
- Passive safety systems
- Low pressure reactor system
- In US NRC pre licensing process
- Expeditious manufacturing and deployment
- High reliability
- Proliferation resistant
- Included in DOE GNEP proposals
Deployment Readiness

Deployment Potential of Innovative SMRs

- **2030**
 - Fast Reactors (Na; Pb; Pb-Bi):
 - RBEC-M
 - BREST-300
 - KALIMER
 - VHTR: AHTR
 - LWRs with TRISO Fuel:
 - AFPR
 - VKR-MT
 - PFPWR 50
 - Longer-term Na & Pb/Pb-Bi Cooled:
 - STAR-LM
 - LSPR
 - ENHS
 - SSTAR
 - BN GT-300

- **2020**
 - Integral Design
 - PWRs:
 - SCOR
 - SMART
 - IRIS
 - CAREM
 - Advanced LWRs, PHWRs:
 - IMR
 - AHWR
 - CCR
 - HTGRs:
 - GTHTR300
 - GT-MHR
 - HTR-PM
 - PBMR
 - Nearer-term Na Cooled Reactors:
 - 4S
 - Submarine Derivatives:
 - SVBR-10
 - SVBR-75/100

- **2010**
 - Conventional Refuelling Schemes
 - Small Reactors without On-site Refuelling
Advantages of the 4S Design

- **Simple design- factory constructible**
 - Easy to construct – Atmospheric operating pressures
 - Small modules – Easy to transport
 - Based on proven design and historic operations

- **Small components**
 - Easy to fabricate
 - Many sources in supply chain

- **Technical licensing documents being completed**
 - USNRC licensing process ongoing
 - Inherent safety proven by testing
 - Small reactor with 15-30 year core and refueling cycle
 - Japanese interests have spent over $300 Million over 20-years on 4S development
Oil Sands Applications

- Steam distribution limited to 10-15 km
- Dedicated steam distribution for 4S over approximately 300-700 square km if located at the center of the production area
- If formation becomes depleted 4S reactor can be remissioned to serve other needs including hydrogen production, water treatment, upgrading, chemical production, etc.
- 15 years before refueling
- The 4S is air cooled
- Air and water emissions virtually nil
4S in oil sands production

- 270 MW thermal
- 2x 135MW 4S facility
 - Configured for surface and SAGD
- Steam Cost:
 - Significant discount off avoided cost or fixed price steam purchase agreement
- Steam cycle will be tailored to specific applications during Feasibility Study
4S in oil sands production

- 4S will be deployed in 2 reactor unit configuration
 - Capable of 40,000 bbl/day in SAGD
 - 270 MWth for surface and upgrading applications
- 4S units are base load steam production capability
 - Supplemented by fossil fuel steam production

![Diagram showing steam load and 4S nuclear baseload with fossil steam generation](image-url)
Deployment Strategy

- **Developers Risk**
 - Takes several years and large expenditure to develop and license a new reactor design and start generating a revenue stream

- **Risk Mitigation**
 - Time phased costs to achieve these milestones
 - Exit ramps at each milestone
 - As milestones are achieved, oil sands customer commitment deepens

- **Oil sands operator risk** – limited so that only if successful and other means (i.e., CCS) are less expensive

- **Oil sands operator benefits** – energy supply diversity, no GHG emissions
Approximate Breakdown Cost per MMBTU

Total $/ MMBTU

- Toshiba 4S Nuclear Reactor
- Natural Gas
- Diesel

Resource Used

- Capital
- O&M
- Fuel
Cost over Time with 2% inflation and 4% yearly fuel cost increase

- 4S
- Natural Gas
- Diesel

Years

$0.00 $10.00 $20.00 $30.00 $40.00 $50.00 $60.00 $70.00

Total $ / BTU
Program Schedule

- Design Certification Preparation (50 MWe)
- CSNC DC discussions
- Additional reactor deployments
- Oil sands Pre-Application Studies
- CSNS License Preparation
- CSNC and other agency review
- Environmental Report and Site Design
- Construction
- Facility Startup operations

Path Forward

- Identification of a specific site and operations of interest
- Mutual Nondisclosure Agreement
- Joint Phase I Initial Feasibility Study of 4S application to Company facilities
- Memorandum of Understanding
- Phase II Final Feasibility Study
- Letter of Intent
- Submittal of licensing application to the CNSC and other federal and provincial entities
Thank you for your time and interest

1000-888 3rd Street SW
Bankers Hall West Tower
Calgary, AB T2P 5C5
403-444-5992

Dr. John N. O’Brien – CEO

Mr. Philip O. Moor PE – Tetra tech