

30th Annual CNS Conference

Energy for Oil Sands Production

June 2009

Soheil Asgarpour, Ph.D., P.Eng.

What is happening?

- In the long term the energy demand will increase due to the world population increase and expected economic growth
- Supply of easy oil can not keep up with the increase in demand
- Oil will stay as the main source of the transportation fuel in the foreseeable future
- Globally production of heavy crude is increasing
- More energy production means more CO2 emitted at a time when climate change looms as a critical global issue
- Obama's energy policy will have a profound impact on oil sands development

World oil production by OPEC/non-OPEC

Source IEA

Production rises to 104 mb/d in 2030, with Middle East OPEC taking the lion's share of oil market growth as conventional non-OPEC production declines

World oil production by source in the Reference Scenario

64 mb/d of gross capacity needs to be installed between now and 2030 to meet demand growth & offset decline

Energy-related CO₂ emissions

97% of the projected increase in emissions between now & 2030 comes from non-OECD countries – three-quarters from China, India & the Middle East alone

Oil Sands 101

The Bitumen Recovery Challenge

The Resources

The Largest Oil Resources in The World

Petroleum Equities Inc., Potomac-Severn Group LLC, December 2004

Proven World Crude Oil Reserves

Sources: Oil and Gas Journal - Dec 2002, AEUB

Cumulative Increase in GDP in \$ Billions (2000-2020)*

Alberta	1,167
Other Provinces	310
Outside Canada	268

*Canadian Energy Research Institute, *Economic Impact of Alberta's Oil resources*, August 2006

Energy Intensities

GHG Intensities

PTAC's Technology Options to Reduce GHG Emissions from Oil Sands

- **CO2** sequestration
- **Eco efficiency Program**
- Emerging exploitation technologies (FGSS, etc.)
- Alternative solutions to replace natural gas consumption

Use of Natural Gas: Is it a poor use of a clean fuel? Do we have enough gas?

Alternative Solutions to Replace Natural Gas

- Gasification of coal, coke or asphaltenes, etc. combined with CO2 sequestration
- Burning bitumen combined with CO2 sequestration
 - Nuclear
- **Other options**

Gas Consumption Forecast

Oil Sands Production Forecasts Forecast Risked Growth

Oil Sands Production Forecasts

Comparative Production Forcasts

Natural Gas Consumption

Gas Requirements

Gas Supply and Demand

Projected Canadian Natural Gas Supply/Demand Balance

GHG Emissions

GHG Emissions, 2006 - 2020 (t/d)

Application of Nuclear Technology – Opportunities

- Low operating cost
- Reliable
- Emission-free energy
- Flexibility in generating steam, hydrogen, heat, and electricity
- Reduction in consumption of natural gas
- Energy cost certainty
- Reduces premium fuel availability concerns
- High tech jobs

Application of Nuclear Technology – Challenges/Considerations

- High capital cost
- Technical feasibility and economic viability
- Distance to transport steam economically
- Size dictates next generation reactors
- Construction challenges: remote site with difficult access
- Harsh weather conditions
- Labor/skills shortages
- Lack of experience with nuclear technology or nuclear power generation
- Lack of regulatory frame work
- Safety
- Security
- Commercial application is likely post 2025

Application of Nuclear Technologies

- Phase 1: Evaluate nuclear technologies for oil sands application
- Phase 2: Study of application of high temperature gas reactors to in-situ operations
- Phase 3: Detailed Engineering study
- Phase 4: Implementation of field pilot tests

Phase one: Evaluated Options

- 120,000 BPD In-situ (SAGD), constructed in four (4) 30k BPD stages;
- 100,000 BPD Mining; and
- 100,000 BPD Integrated Mine and Upgrader.

Mining and In-Situ

- Bitumen production
- Project life
- Steam oil ratio
- Pressure at well head
- Steam quality
- Electricity requirement
- Mining and in-situ/Integrated

Study Results

- NPPs with water cooled reactors have thermal capacities greatly exceeding the energy requirements of the evaluated options.
- Water cooled reactor are not hot enough to generate steam for SAGD
 - High Temperature Gas Reactors (HTGRs) could meet the technical requirements for the three (3) scenarios considered, but are not currently commercialized.
 - Among the considered technologies are the Pebble Bed Modular Reactor (PBMR), Toshiba 4S, and the General Atomics High Temperature Gas Reactor (GA-HTGR).

Study results

- The introduction of nuclear energy into the Oil Sands region will be a lengthy and expensive process
- the timing is likely post 2025.
- The Project duration, including site selection, environmental assessment, licensing and construction could span over 15 years.
- A practical way of utilizing the existing commercial NPP designs for use in the Oil Sands region would be to adopt a 'utility' approach for the delivery of energy (in the form of steam and electricity) to multiple Oil Sands facilities, and for providing electricity to the Alberta power grid.

Conclusions

- Development of Canada's Oil Sands resources are essential to meet the global energy demand and stimulate Canada' economic prosperity.
- Application of existing and emerging technologies can ensure sustainable development of Canada's world class Oil Sands resources.

Thank You

