

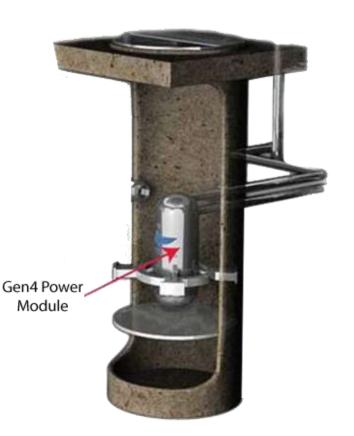
NEW LEADERSHIP, NEW DIRECTION

SMR Technology Selection for Remote Sites

33rd Annual CNS Conference 12 June 2012 David Carlson, Gen4 COO

Gen4 Reactor Technology

Transportable


No Refueling, 10 year life

Improved Safety

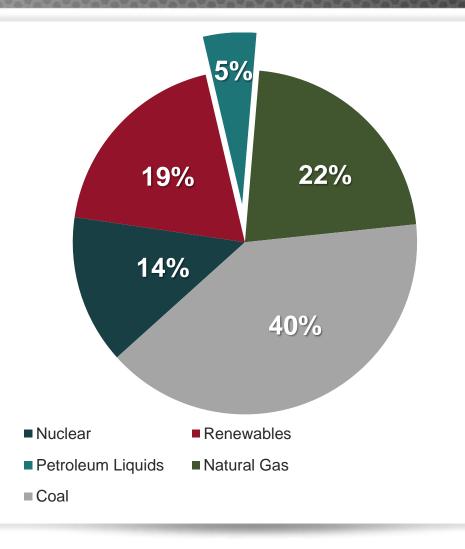
High power density, 25 MWe

Sealed Underground module

Proven Technology

Unique advantages over all current operating reactors

Worldwide Electricity Generation


Petroleum Liquids

- 5% of worldwide electrical generation is from diesel and other fuel oils
- 381 gigawatts of installed diesel/fuel oil generation capacity
- Approximately 1 trillion kilowatthours of annual generation (est. \$300B annual sales)

(Source: EIA: IEO2011)

Small Nuclear can replace large diesel generation

- Appropriate capacity (25MWe)
- Small footprint

Addressable Market is replacement of expensive Diesel Generation

Target Markets

GEN4 ENERGY

Remote and Island Communities

- 170 island communities in the world over 100,000 in population
- Many remote communities in the Arctic, India, Malaysia, the Middle East, etc.
- Drivers: Cost, Access, and Reliability

Mining and Oil & Gas Production

- Many remote sites, highly energy intensive
- Drivers: Cost, Supply chain disruptions

Government Facilities

- Over 100 Govt. facilities where a 25MWe unit would be appropriate
- Drivers: Security, GHG Reduction

Cost Comparison with Diesel Generation

30¢ /kw-hr (or more)

Diavik Diamond Mine – NWT

Electrical generation capacity

34 Mwe - 11 diesel generators

Fuel Storage 110 million litres (3,500 tankers)

GENA

Ice Roads Melting?

May 29, 2011 Global warming jeopardizing ice highways, study says Globe and Mail

Canada will lose winter-road access to nearly 400,000 square kilometres of land by mid-century, UCLA researchers predict

Gen4 Technology Selection

Design optimization for remote sites

- Locations where robust utilities (electrical grids and gas pipelines) are unavailable
- Replacement of diesel power generation

The design requirements that drove Gen4 technology selection are:

- **Transportable Size** Compact core (less than ~1.6 m in dia.)
- No On-Site Refueling Long-lived core (~10 years) w/o refueling
- Simplicity and Safety Next generation design
- High Power / Size ~70 MWt and ~25 MWe
- Thermal Efficiency Outlet temperature of ~500 C
- Sealed nuclear module Proliferation resistance

These attributes led the Gen4 concept to be defined by the following :

- Fast Spectrum
- Lead-Bismuth Eutectic (LBE) coolant
- Uranium Nitride (UN) fuel

Why Fast Spectrum?

<u>Core Life</u> – Long core life without refueling

- The absorption cross section of fission products and their impact on reactivity is small.
- There is little transmutation that could reduce reactivity, the loss of reactivity during burnup is almost entirely attributable to ²³⁵U fission

Simplicity - Simpler than a moderated core with respect to:

- nuclear data uncertainties,
- dynamic performance,
- localized/heterogeneous effects,
- system modeling and predictability,
- changes in system characteristics with lifetime

Neutronics

- Temperature feedback is mostly caused by expansion, which provides small, simple, negative reactivity feedback, allowing a simple, robust control system.
- Small reactivity feedback means a small temperature defect (the difference in reactivity between startup and operating temperatures), which simplifies reactor startup/shutdown and requires less excess reactivity
- A fast spectrum system generally has a larger delayed neutron fraction because more fissions occur in U-238 (a first-order safety significant parameter).

Why LBE Coolant?

No chemical reaction with water/air

- No chance of plant fires caused by coolant leaks, important for a transportable system
- · Leaking coolant would freeze solid

High boiling temperature of 1700°C

· Boiling during an accident is practically eliminated

Melts at 125°C

- · Lower melting point than lead
- · Virtually no expansion of LBE on melting

Good natural circulation potential

Excellent neutronic properties

- Excellent neutron reflector
- Low absorption and good neutron economy

Consistent/strong negative void coefficient

LBE is a clear choice for transportable low power (<100 MWt) reactors

Why UN Fuel?

Uranium Nitride (UN) is a ceramic fuel like Uranium Oxide (UO₂)

• Similar melting temperature (2888 vs. 2749C)

Superior properties of UN compared to UO₂ include:

- Ten times higher thermal conductivity (26 vs. 2 W/m-K), means that UN fuel centerline temp can be 1000°C lower than UO₂, higher margin to fuel damage
- Higher uranium density (13.52 vs. 10.5 g/cc), allows a smaller reactor size
- Low fission gas release and low fuel swelling
- Greater resistance to irradiation damage over extended periods of time (10 years)

Uranium Nitride (UN) Fuel has superior properties compared to UO₂

Safety

Nuclear Reactor Accidents

- Fukushima Zircaloy and steam interaction led to hydrogen explosions NOT POSSIBLE
- Chernobyl Uncontrolled reactivity insertion, high pressure failure, fuel fires NOT POSSIBLE

Major Differences

- No spent fuel pool
- No zircaloy to cause hydrogen production
- Reactor pressure is near atmospheric
- Coolant is not high pressure water (which can flash to steam)
- LBE coolant cannot reach its vaporization temperature of 1700°C

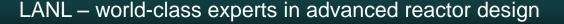
Operating Experience

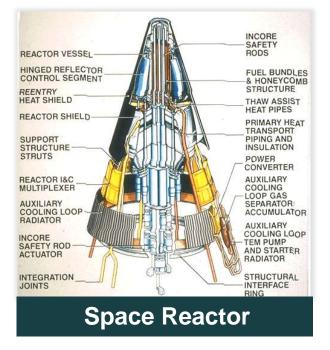
'Alfa' Class Submarines

- 7 submarines in the class, with 155 MW(th) LBE cooled reactors
- Operated from 1972
- "The fastest class of military submarines ever built"
- LBE reactor technology was operationally employed in an extremely demanding application beginning nearly 40 years ago

Proven Technology – over 80 reactor-years of operation

Copyright 2012 All rights reserved. 14

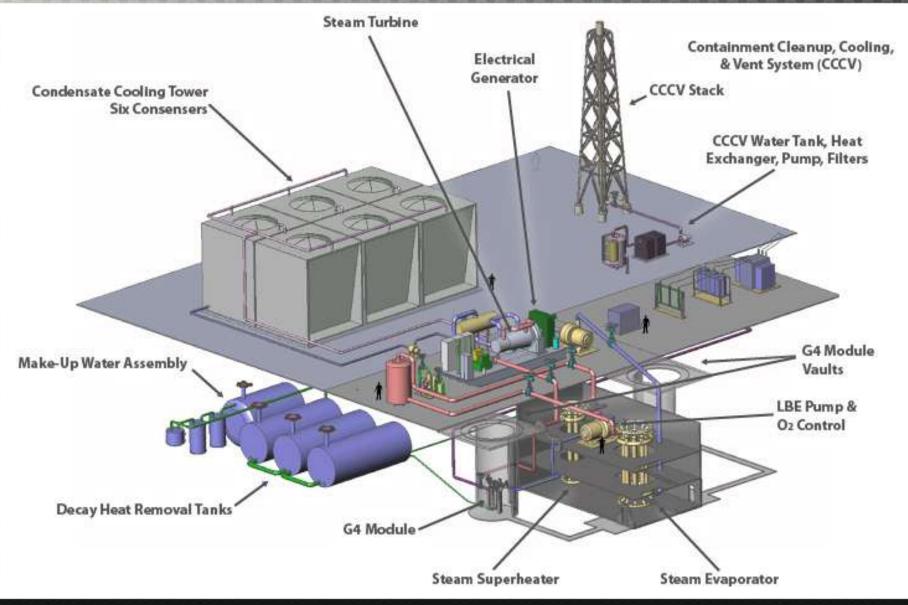

Los Alamos National Laboratory


Cooperative Research and Development Agreement (CRADA) with LANL

• Joint ownership of HPG technology

LANL is uniquely qualified

- 60+ years reactor design experience
- Developed reactor design codes used worldwide
- Experts in design, safety, and licensing



System Layout

System Layout

		_	
 	_		
	.		 _

NEW LEADERSHIP, NEW DIRECTION

Thank You!

