Overview of NuScale Technology

D. T. Ingersoll

Director of Research Collaborations

June 12, 2012

33rd Annual CNS Conference

Deliberately Small for Safety and Affordability

KEY: Scalable plant design based on robust 45 MWe module

- Integral PWR design with natural circulation of primary coolant
- Steel containment vessel immersed in 4 million gallon pool
- Factory fabricated and truck transportable to site
- Staggered build-out to match demand growth and reduce cash outlay

45 MWe Module

NuScale Module: NSSS and Containment

Passively Safe and Robust Modules

Natural Convection for Cooling

- Inherently safe natural circulation of water driven by gravity cools the nuclear fuel
- No pumps required to continuously provide water for safety functions

Seismically Robust

- System is submerged in a pool of water below ground in an earthquake resistant building
- Reactor pool attenuates ground motion and dissipates energy

Defense-in-Depth

 Multiple additional barriers to protect against the release of radiation to the environment

Modules in Robust Reactor Building and Pool

NuScale nuclear power reactors are housed inside high strength (10x) steel containment vessels and submerged in 4 million gallons of water below

ground level inside the

Reactor Building.

The Reactor Building is

designed to withstand
earthquakes, floods,
tornados, hurricane force
winds, and aircraft
impacts.

12-module, 540 MWe NuScale Plant

Decay Heat Removal From Containment

- Provides a means of removing core decay heat and limits containment pressure by:
 - Steam Condensation
 - Convective Heat Transfer
 - Heat Conduction
 - Sump Recirculation
- Reactor Vessel steam is vented through the reactor vent valves (flow limited)
- Steam condenses on containment
- Condensate collects in lower containment region
- Reactor Recirculation Valves open to provide recirculation path through the core
- Provides 30+ day cooling followed by indefinite period of air cooling.

Stable Long Term Cooling

Reactor and nuclear fuel cooled indefinitely without pumps or power

WATER COOLING **BOILING AIR COOLING** No Pumps • No External Power • No External Water Decay heat Transition to Decay heat removed by long-term air removed by containment cooling steam generators DECAY POWER (MWt) (> 30 Days) (30 Days) and DHRS (3 Days) Indefinite TIME = 3 days 30 days 1 sec 1 hour 1 day POWER = 0.8 MWt 0.4 MWt < 0.4 MWt 10 MWt 2.2 MWt 1.1 MWt

Module Assembly Operations

Modularity Is Key to Scalability

Reference Plant: 12 modules @ 45 MWe each produces 540 MWe

Allows for staggered installation and refueling of modules

Cross-sectional View of Reactor Building

Incremental Build Out

NuScale Site layout

Innovation Requires Robust Testing Program

1100 NE Circle Blvd, Suite 350 Corvallis, OR 97330 541-207-3931 http://www.nuscalepower.com

dingersoll@nuscalepower.com

